Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch
نویسندگان
چکیده
We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.
منابع مشابه
Sensitive gas sensor embedded in a vertical polymer space-charge-limited transistor
Related Articles Frequency-domain correction of sensor dynamic error for step response Rev. Sci. Instrum. 83, 115002 (2012) Application of in-cell touch sensor using photo-leakage current in dual gate a-InGaZnO thin-film transistors Appl. Phys. Lett. 101, 212104 (2012) Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a ...
متن کاملLiquid crystalline organic semiconductors for organic transistor applications
The recent development of materials for organic field effect transistors (OFETs), including small-molecule and polymer materials, are briefly reviewed, and the problems that remain to be solved prior to practical application and use are discussed. Liquid crystalline materials are good candidates for OFETs because of their advantageous properties over soluble small-molecule materials. Liquid cry...
متن کاملPerformance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملOrganic field effect transistors
This chapter aims to provide the reader with a practical knowledge about electrical methods to measure organic thin film transistor devices. It presents a series of recipes, which allow the experimentalist to gain insight into the performance and limitations of the devices and circuits being measured. It also gives guidelines on how to correctly interpret the measurements and to provide feedbac...
متن کاملIntegrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver ...
متن کامل