Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch

نویسندگان

  • Jooyeok Seo
  • Soohyeong Park
  • Sungho Nam
  • Hwajeong Kim
  • Youngkyoo Kim
چکیده

We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitive gas sensor embedded in a vertical polymer space-charge-limited transistor

Related Articles Frequency-domain correction of sensor dynamic error for step response Rev. Sci. Instrum. 83, 115002 (2012) Application of in-cell touch sensor using photo-leakage current in dual gate a-InGaZnO thin-film transistors Appl. Phys. Lett. 101, 212104 (2012) Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a ...

متن کامل

Liquid crystalline organic semiconductors for organic transistor applications

The recent development of materials for organic field effect transistors (OFETs), including small-molecule and polymer materials, are briefly reviewed, and the problems that remain to be solved prior to practical application and use are discussed. Liquid crystalline materials are good candidates for OFETs because of their advantageous properties over soluble small-molecule materials. Liquid cry...

متن کامل

Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor

In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...

متن کامل

Organic field effect transistors

This chapter aims to provide the reader with a practical knowledge about electrical methods to measure organic thin film transistor devices. It presents a series of recipes, which allow the experimentalist to gain insight into the performance and limitations of the devices and circuits being measured. It also gives guidelines on how to correctly interpret the measurements and to provide feedbac...

متن کامل

Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013